Improving e-learning recommendation by using background knowledge

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Learning Objects Recommendation Processes by Using Domain Description Models

Learning Objects (LOs) are widely used for teaching because these can be reused in alternative contexts to support specific learning objectives. One of the most important challenges in this area is to provide accurate LOs recommendation to simplify LOs search, description, composition, articulation and reuse. The current problem confronted by teachers in an educational area is the large effort ...

متن کامل

Learning Domain Theories Using Abstract Background Knowledge

Substantial machine learning research has addressed the task of learning new knowledge given a (possibly incomplete or incorrect) domain theory, but leaves open the question of where such domain theories originate. In this paper we address the problem of constructing a domain theory from more general, abstract knowledge which may be available. The basis of our method is to rst assume a structur...

متن کامل

Using Background Knowledge in Multilayer Perceptron Learning

In this contribution we present a method for constraining the learning of a Multi-Layer Perceptron network with background knowledge. The algorithms presented here can be used to train the partial derivatives of the network to match given numerical values or to minimize a given cost function. Thus the mapping produced by the network can be constrained according to known input-output models, mon...

متن کامل

Improving Text Classification with LSI Using Background Knowledge

We present work in progress that uses Latent Semantic Indexing (LSI) in conjunction with background knowledge and unlabeled examples to improve text classification accuracy. The singular value decomposition (SVD) that is performed by LSI is done on an expanded term by document matrix that includes the labeled training examples as well as the unlabeled examples. We report classification accuracy...

متن کامل

Improving structural similarity based virtual screening using background knowledge

BACKGROUND Virtual screening in the form of similarity rankings is often applied in the early drug discovery process to rank and prioritize compounds from a database. This similarity ranking can be achieved with structural similarity measures. However, their general nature can lead to insufficient performance in some application cases. In this paper, we provide a link between ranking-based virt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems

سال: 2018

ISSN: 0266-4720

DOI: 10.1111/exsy.12265